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The tensors derived from diffusion tensor imaging describe com- characterized by a simple scalar quantity. However, scalar
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lex diffusion in tissues. However, it is difficult to compare tensors
irectly or to produce images that contain all of the information of the
ensor. Therefore, it is convenient to produce scalar measures that
xtract desired aspects of the tensor. These measures map the three-
imensional eigenvalues of the diffusion tensor into scalar values.
he measures impose an order on eigenvalue space. Many invariant

calar measures have been introduced in the literature. In the present
anuscript, a general approach for producing invariant scalar mea-

ures is introduced. Because it is often difficult to determine in clinical
ractice which of the many measures is best to apply to a given
ituation, two formalisms are introduced for the presentation, defini-
ion, and comparison of measures applied to eigenvalues: (1) normal-
zed eigenvalue space, and (2) parametric eigenvalue transformation
lots. All of the anisotropy information contained in the three eigen-
alues can be retained and displayed in a two-dimensional plot, the
ormalized eigenvalue plot. An example is given of how to determine
he best measure to use for a given situation by superimposing
sometric contour lines from various anisotropy measures on plots of
ctual measured eigenvalue data points. Parametric eigenvalue trans-
ormation plots allow comparison of how different measures impose
rder on normalized eigenvalue space to determine whether the
easures are equivalent and how the measures differ. These formal-

sms facilitate the comparison of scalar invariant measures for diffu-
ion tensor imaging. Normalized eigenvalue space allows presenta-
ion of eigenvalue anisotropy information. © 1999 Academic Press

Key Words: diffusion tensor imaging; anisotropic diffusion;
agnetic resonance imaging.

INTRODUCTION

In some tissues of the body, such as the gray matter of the
iffusion is nearly directionally uniform in space. This spati
niform diffusion is referred to as isotropic diffusion and can
escribed by a simple scalar quantity. Diffusion that varies
irection is termed anisotropic. The complex nature of anisot
iffusion has been described by a diffusion tensor that con

nformation about the magnitude of diffusion in different dir
ions. This information is often depicted as a diffusion ellips
riented in space with the major axis in the direction of gre
iffusion (1, 2). The major, intermediate, and minor axes
utually orthogonal. The lengths of the axes are proportion

he square of the diffusion coefficient in the direction along
xis. This complete tensor description of diffusion cannot be
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ities can be used to convey information about various attribut
he tensor, including the magnitude of the diffusion coeffic
he orientation of diffusion directions, and the degree of an
opy. Summarizing attributes of the tensor in a scalar quant
mportant both for quantification of the attributes of the tensor
or display of parametric images of the diffusion attributes.

Many measures of diffusion anisotropy and the magnitud
iffusion have been introduced (1, 3–7). It is often difficult to
ompare and contrast these measures and to determine
easure is best suited for a particular application. This det
ation involves three steps. First, many candidate measures
e considered. To this end, the first part of the manuscript d
method of constructing scalar invariant measures. Seco

hese measures must be compared to determine which h
roper theoretical characteristics for the intended task. The
tructs introduced in this manuscript are designed to perform
tep. The normalized eigenvalue plot demonstrates how me
ap eigenvalues into scalar quantities. These two-dimens
lots retainall the information about the anisotropy of the eig
alues. The only information that is removed when normali
he eigenvalues is a scale factor for the absolute magnitude
igenvalues. This allows all of the information about eigenv
nisotropy to be plotted and compared on two-dimensional
n example will demonstrate the application of these plot
onstruct for determining whether two measures are equival
lso introduced; these are the parametric eigenvalue transf

ion plots. Third, before using a measure for clinical applicati
he effect of measurement noise on the value needs to be
ined. This last step might be based on statistical calculatio
onte Carlo simulation. The sensitivity to experimental error

he various measures is not discussed in the present manu

THEORY AND DEFINITIONS

A set of eigenvalues of a diffusion tensor arel1, l2, l3. If they
re ordered according to magnitude they becomelmin, lintermediate,
max. (This manuscript is concerned only with the theore
haracteristics of different eigenvalue measures. Measure
rror in the eigenvalues is not a factor in this consideration.
igenvalues here are considered to be noise-free.)
Definition: A scalar measurefor a set of eigenvalues is

unction that maps a set of eigenvalues into a scalar valu
1090-7807/99 $30.00
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2 MARK M. BAHN
Definition: An invariant measurefor a set of eigenvalues
ne that does not depend on the frame of reference in whic
iffusion tensor was measured. Alternatively, the value o

nvariant measure does not depend on the order of the e
alues or the names of the eigenvalues used in the calcul
Definition: A scalar invariant measureis a scalar-value

nvariant measure.
Definition: A normalized eigenvalueis a point, (la, lb), in

wo-dimensional space onto which a set of eigenvalues, (l1, l2,
3), is mapped by normalizing the two smaller compon
ith respect to the largest eigenvalue:

~lmin, l intermediate, lmax! 3 S lmin

lmax
,

l intermediate

lmax
D 5 ~la, lb!.

[1]

This can also be thought of as a point on a plane in th
imensional space:

L 5 ~la, lb! ; ~la, lb, 1!. [2]

efinition: A normalized eigenvalue plotis a plot ofla versuslb.
ll of the allowable values ofla andlb fall in the region bounde
y la 5 0, lb 5 1, andla 5 lb (Fig. 1). This region is terme
ormalized eigenvalue space.In perfect isotropic diffusion, no
alized eigenvalues map onto the point (1, 1). In anisotr
iffusion, whenla andlb are equal, the diffusion ellipsoid is sa

o be prolate (in the extreme case it has the shape of a c
henlb 5 1, the ellipsoid is said to be oblate (in the extreme

t has the shape of a pancake). The boundary of norma
igenvalue space wherela 5 0 corresponds to the degenerate c
hen the diffusion ellipsoid is an ellipse.
Definition: Theorder of normalized eigenvalues:Given two

ets of normalized eigenvalues,L1 and L2, and a particula
calar measure,S(L), thenL1 . L2 if S(L 1) . S(L 2).
Definition: Two scalar-valued eigenvalue measures,S1(L)

nd S2(L), are equivalent if the order of the normalize

FIG. 1. (a) Normalized eigenvalue space (shaded region). Perfect
dentity. Oblate diffusion ellipsoids map alonglb 5 1. (b) This demonstrat
oward either a pancake shape or a cigar shape.
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igenvalues is identical for both measures.S1 equivalent toS2

oes not imply thatS1(L) equalsS2(L). If two measures ar
quivalent, there is a function, monotonic over the range o
easures, that maps the values of one into the other.
Definition: Parametric eigenvalue transformation plo

et S1(L) and S2(L) both be scalar-valued maps of t
ormalized eigenvalue space. Then a parametric eigen

ransformation plot is a parametric plot ofS1(L) versus
2(L) for all L on theboundaryof normalized eigenvalu
pace. The parametric eigenvalue transformation plot
nstrates whether two scalar measures are equivale

hey are not equivalent, the parametric eigenvalue tran
ation plot will be a closed region. Normalized eigenva

pace would map into this region. If the measures
quivalent, the parametric plot will be a line (a degene
egion with no enclosed area). The shape of the line d
nstrates the function that maps the values of one o
easures into the other (Fig. 2).
Definition: A Class I measureattains its minimum valu

nly at (0, 0) in normalized eigenvalue space (Figs. 3a, 3b
lass II measureattains its minimum value wheneverla 5 0

Figs. 3c, 3d).
The Mathematica software package (Wolfram Resea

nc., Champaign, IL) was used on an Apple Quadra comp
Apple Computer Inc., Cupertino, CA) to prepare the p
sed in this manuscript.

RESULTS AND DISCUSSION

Three rotationally invariant parameters which can be der
rom the eigenvalues are (4)

I 1 5 l1 1 l2 1 l3 [3]

I 2 5 ~l1l2! 1 ~l1l3! 1 ~l2l3! [4]

I 3 5 l1l2l3. [5]

ropic diffusion maps onto (1, 1). Prolate diffusion ellipoids map along
the regions of normalized eigenvalue space where the diffusion ellipso
isot
es
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3MEASURES IN DIFFUSION TENSOR IMAGING
There are other possible invariant parameters that will n
iscussed here (3).

easures of Diffusion Magnitude

The rotationally invariant parametersI1, I2, andI3 can be pu
nto forms that have the same units as the eigenvalues (mm2/s):

A 5
I 1

3
5

l1 1 l2 1 l3

3
[6]

J 5 ÎI 2

3
5 Î~l1l2! 1 ~l1l3! 1 ~l2l3!

3
[7]

K 5
I 2

I 1
5

J2

A
5

~l1l2! 1 ~l1l3! 1 ~l2l3!

l1 1 l2 1 l3
[8]

G 5 Î3 I 3 5 Î3l1l2l3 [9]

H 5
3I 3

I 2
5

G3

J2 5
3l1l2l3

~l1l2! 1 ~l1l3! 1 ~l2l3!

5
3

1

l1
1

1

l2
1

1

l3

. [10]

A, J, K, G, andH are all scalar-valued invariant measures o
entral tendency of the eigenvalues, or “how big” the eigenvalue
herefore, they are in some sense measures of the magnit
iffusion. The measuresA, G, andH are the arithmetic mean, t
eometric mean, and the harmonic mean of the eigenvalues, r
ively. The reciprocal ofH has been discussed by Basser (4).

In perfect isotropic diffusion the eigenvalues are identical (m
urement error is not a factor in this discussion of the theore
roperties of the diffusion measures). In the perfect isotropic

he diffusion ellipsoid is a sphere. For a given set of isotr
igenvalues, all five measures,A, J, K, G, andH, yield identica
alues for the magnitude of isotropic diffusion. Therefore,
ptimal choice of which measure to use in an isotropic e

FIG. 2. (a) The parametric eigenvalue transformation plot ofA versusJ. T
rolate, and degenerate boundaries of normalized eigenvalue space ar
ets of eigenvalues. (b) The parametric eigenvalue transformation plotA v
e

e
re;

of

ec-

-
al
e,
c

e
i-

onment is dictated by the structure of the noise in the m
urement and other similar practical considerations, rather
y the theoretical properties of the eigenvalue measures
For sets of unequal eigenvalues, the differences betwee

alues ofA, J, K, G, andH are due to the effects of dispar
igenvalues. The harmonic mean,H, is most influenced b
isparate eigenvalues,J, K, andG are influenced less, and t
rithmetic mean,A, is influenced the least. This relationship
eflected by the relative magnitudes:

A $ J $ ~K, G! $ H for all sets of eigenvalues. [1

The magnitude ofK relative toG changes according to t
pecific eigenvalues under consideration. The theoretical
al measure of the overall eigenvalue magnitude depen

he exact application of the measure and the exact mean
verall eigenvalue magnitude for a specific application
imilar situation exists when determining how to mea
how big” a person is. Height would be a better measure w
etermining door heights and weight would be better for p

ems involving lifeboat capacity.
The differences in the values of these measures are not s
transformation of the values by a monotonic function. Ther
o monotonic functions that transformA, J, K, G, or H into each
ther. This can be demonstrated by a parametric eigenvalue

ormation plot, Fig. 2. Figure 2a defines a region with non
rea, and therefore the measuresA andJ are not equivalent.
Heretofore, one the more commonly used measures o
agnitude of diffusion has beenA (1, 3, 5–9). This might be

elated to the fact thatA is least influenced by dispara
igenvalues and therefore has the least “anisotropy weigh
Each measure imposes a different order on the se

igenvalues. Some measures may prove to have a des
hysical or physiological interpretations, and others may p
uperior for demonstrating various features on parametric
ges. It is important to consider the theoretical property o
easure, since measures determine the order of eigen

shaded region represents the map of normalized eigenvalue space. The
dicated. The entire parametric plot lies below the line of identity, sinceA $ J for all
usH.
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5MEASURES IN DIFFUSION TENSOR IMAGING
esion brighter than a certain comparison structure, whe
se of another measure might result in an image with the

esion darker than the comparison structure.

easures of Anisotropy

When the three eigenvalues of the diffusion tensor are
dentical, there is some degree of anisotropy. Anisotropy lite

eans “not the same in all directions.” Therefore, intuitivel
easure of anisotropy should reflect the degree of eigen
isparity. There are many ways in which the eigenvalues
eviate from isotropy, and the differences between the va
easures of anisotropy depend on the specifics of how they
oints in eigenvalue space into scalar values.
The values of the measures of central tendency,A, J, K, G,

nd H, differ primarily in their sensitivities to disparate
envalues. From Eq. [11], there is a strict ordering of
alues of these measures. Because of this, ratios of
easures can be used as basic measures of anisotrop
xample:

RGA 5
G

A
unitless, range@0, 1#. [12]

A, J, K, G, andH are rotationally invariant and all have t
ame units, so ratios ofA, J, K, G, andH are also rotationall
nvariant and unitless. Other similar basic measures of an
opy areRJA, RKA, RHA, RGJ, RHJ, RHG, RHK.

BecauseA $ J $ (K, G) $ H, with equality only when th
igenvalues are equal, values of these ratios near 1 occ

sotropic diffusion. Because disparate eigenvalues reduc
alues of the numerators of these ratios to a greater degre
he values of the denominators, values of the ratios tha
ear zero correspond to more disparate eigenvalues,
nisotropic eigenvalues. It is the strict order of the magnit
f the measures of central tendency that is the critical fe
f these ratios being measures of anisotropy.
RKJ is not included in the list of anisotropy measures bec

t is identical toRJA. RKG andRGK are not included in this lis
ecause there is not a strict ordering ofK relative toG for all
ets of eigenvalues.
The normalized eigenvalue plot is a two-dimensional wa

isplaying all of the anisotropy information in a set of eig
alues. Equation [13] demonstrates that normalization o
igenvalues by any scale factor does not alter the value o
nisotropy measures:

RGA~l1, l2, l3! 5
G~l1, l2, l3!

A~l1, l2, l3!
5

lmaxG~la, lb, 1!

lmaxA~la, lb, 1!

5 RGA~la, lb, 1!. [13]

FIG. 3. Normalized eigenvalue space with superimposed isometric
hereas black is zero. (a)A/J, (b) K/A, (c) G/J, and (d)H/K. 3(e) A norm
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easures listed above. Because of this, the discussion of a
opy measures can be limited to their effects on two-dimens
ormalized eigenvalue space and still be completely general

o the entire three-dimensional eigenvalue space.
Measures of anisotropy can be compared by displa

sometric contour lines on plots of normalized eigenva
pace (Fig. 3). This convenient display would not be pos
sing the entire three-dimensional eigenvalue space. T
lots demonstrate the desired common feature that the va
easures are equal to 1 atla 5 lb 5 1 (isotropic diffusion) an
ecrease for points farther away from 1. The differences

ween the measures lie in the specific way that this dec
ccurs. For example, one difference is thatRJA andRKA tend to
ero only as bothla andlb tend to zero, whereasRGJ tends to
ero asla tends to zero.RJA and RKA are Class I measure
hereasRGJ is a Class II measure.
The basic measures can be combined or transforme

unctions that are monotonic over their range to yield m
omplicated measures. There are also measures of anis
hat are not related to the basic measures defined here (3). An
xample of a transformation of the basic measures is

RAJGG 5
AJ

GG
unitless, range@0, 1#. [14]

RGA cubed is another transformation of the basic meas
t is equal to the familiar volume ratio, VR (8). VR is equiv-
lent toRGA. VR is a Class II measure:

VR 5 ~RGA! 3 5
27l1l2l3

~l1 1 l2 1 l3!
3 unitless, range [0, 1].

[15]

Another measure is

CV 5 1 2 Î1 2
GGG

HAA

5 1 2
standard deviation

Î2A
unitless, range@0, 1#. @16#

This is proportional to the coefficient of variation of t
igenvalues and has also been used as a measure of anis
3, 6) (Fig. 3e). CV is a Class I measure. CV is not quit
ombination of the basic measures because it contains the
/H, the reciprocal of a basic measure. VR and CV initi
ppear very similar; VR contains the termGGG/AAA and CV
ontains the termGGG/HAA. However, the presence of theH

ntour lines for the anisotropy measures. White shading represents a v
ed eigenvalue plot of CV with superimposed isometric contour lines.
co
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n the denominator of CV changes it from a Class II mea
o a Class I measure.

CV and VR are clearly not equivalent because CV is in C
, whereas VR is in Class II. Their nonequivalence can als
emonstrated by a parametric eigenvalue transformation
As in the case with different measures of the overall m

itude of diffusion, the best anisotropy measure to use dep
n the particular situation.

Practical Application of the Method

Diffusion tensor imaging eigenvalues from various
ions in monkey brain (8) and human brain (9) are available

n the literature. These values can be plotted on a norma
igenvalue plot, Fig. 4. If one were designing an anisot
easure, the greatest sensitivity in discriminating two
ions would be with a measure that has isometric con

ines running perpendicular to a line connecting the eig
alue points of the structures that are under study. Fig
a, 3b, and 3e demonstrate that the isometric contour
f the anisotropy measureRJA, RKA , and CV are roughl
erpendicular to the distribution of white matter points
ig. 4. In contrast, the measureRGJ might be considered t
ave less desirable features because its isometric line

FIG. 4. Normalized eigenvalue space superimposed with the line o
onkey brain (8). Diffusion for cerebral spinal fluid (CSF) is most isotrop

hose of white matter. IC5 internal capsule, CC5 corpus callosum, Ant5
e
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-
ds
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ed
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ur
-

es
es

are

oughly parallel to the distribution of the more anisotro
ata points (Figs. 3c and 4). Therefore,RJA, RKA , and CV
ould be candidate measures for further analysis with
ard to the effects of experimental error. The dista
etween the isometric contour lines is not as critical a fa
s the orientation of the isometric contour lines. The m
ures in Fig. 3 can be transformed by appropriate func
ithout changing the orientation of the isometric cont

ines to produce images with the desired image intensity
ontrast.

CONCLUSIONS

Various basic invariant measures of both diffusion ma
ude and anisotropy have been introduced here. These c
dded to the growing repertoire of available invariant m
ures. Many other measures can be made by combination
unctional transforms of these basic measures. The op
easure to use for any specific application depends o
xact nature of the application.
The normalized eigenvalue plot allows graphic display

calar eigenvalue measures. The visual display assists i
ting an intuitive understanding of the measure. The nor

ntity. The data points are mean eigenvalues from regions of human b9) and
t maps nearest to (1, 1). The eigenvalues for gray matter are more isot
erior, Post5 posterior, OR5 optic radiations.
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calar measures of an eigenvalue characteristic. Moreove
raphic display can be used to choose between various a
opy measures by demonstrating how the measure ch
elative to the eigenvalues under study.

The parametric eigenvalue transformation plot allows vi
ssessment of whether two measures are equivalent. The
ures are equivalent if the parametric eigenvalue transfo
ion plot is a line.

In actual applications the influence of eigenvalue meas
ent error on these measures must be considered when

ng a measure for any particular application.
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