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The tensors derived from diffusion tensor imaging describe com-
plex diffusion in tissues. However, it is difficult to compare tensors
directly or to produce images that contain all of the information of the
tensor. Therefore, it is convenient to produce scalar measures that
extract desired aspects of the tensor. These measures map the three-
dimensional eigenvalues of the diffusion tensor into scalar values.
The measures impose an order on eigenvalue space. Many invariant
scalar measures have been introduced in the literature. In the present
manuscript, a general approach for producing invariant scalar mea-
sures is introduced. Because it is often difficult to determine in clinical
practice which of the many measures is best to apply to a given
situation, two formalisms are introduced for the presentation, defini-
tion, and comparison of measures applied to eigenvalues: (1) normal-
ized eigenvalue space, and (2) parametric eigenvalue transformation
plots. All of the anisotropy information contained in the three eigen-
values can be retained and displayed in a two-dimensional plot, the
normalized eigenvalue plot. An example is given of how to determine
the best measure to use for a given situation by superimposing
isometric contour lines from various anisotropy measures on plots of
actual measured eigenvalue data points. Parametric eigenvalue trans-
formation plots allow comparison of how different measures impose
order on normalized eigenvalue space to determine whether the
measures are equivalent and how the measures differ. These formal-
isms facilitate the comparison of scalar invariant measures for diffu-
sion tensor imaging. Normalized eigenvalue space allows presenta-
tion of eigenvalue anisotropy information. © 1999 Academic Press
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INTRODUCTION

In some tissues of the body, such as the gray matter of the br.

characterized by a simple scalar quantity. However, scalar que
tities can be used to convey information about various attributes
the tensor, including the magnitude of the diffusion coefficient
the orientation of diffusion directions, and the degree of aniso
ropy. Summarizing attributes of the tensor in a scalar quantity
important both for quantification of the attributes of the tensor an
for display of parametric images of the diffusion attributes.
Many measures of diffusion anisotropy and the magnitude ¢
diffusion have been introduced,(3—7. It is often difficult to
compare and contrast these measures and to determine wt
measure is best suited for a particular application. This detern
nation involves three steps. First, many candidate measures m
be considered. To this end, the first part of the manuscript deta
a method of constructing scalar invariant measures. Second
these measures must be compared to determine which has
proper theoretical characteristics for the intended task. The co
structs introduced in this manuscript are designed to perform tf
step. The normalized eigenvalue plot demonstrates how measu
map eigenvalues into scalar quantities. These two-dimensior
plots retainall the information about the anisotropy of the eigen-
values. The only information that is removed when normalizing
the eigenvalues is a scale factor for the absolute magnitude of 1
eigenvalues. This allows all of the information about eigenvalu
anisotropy to be plotted and compared on two-dimensional plot
An example will demonstrate the application of these plots. /
construct for determining whether two measures are equivalent
also introduced; these are the parametric eigenvalue transforn
tion plots. Third, before using a measure for clinical applications
the effect of measurement noise on the value needs to be de
mined. This last step might be based on statistical calculations

i . . o :
%nte Carlo simulation. The sensitivity to experimental error fo

diffusion is nearly directionally uniform in space. This spatiall){he various measures is not discussed in the present manuscr
uniform diffusion is referred to as isotropic diffusion and can be P

described by a simple scalar quantity. Diffusion that varies with
direction is termed anisotropic. The complex nature of anisotropic
diffusion has been described by a diffusion tensor that containsA set of eigenvalues of a diffusion tensor are A, A;. If they
information about the magnitude of diffusion in different direcare ordered according to magnitude they became Aiemediae
tions. This information is often depicted as a diffusion ellipsoid,... (This manuscript is concerned only with the theoretica
oriented in space with the major axis in the direction of greatestaracteristics of different eigenvalue measures. Measurem
diffusion (1, 2. The major, intermediate, and minor axes arerror in the eigenvalues is not a factor in this consideration. TF
mutually orthogonal. The lengths of the axes are proportional éigenvalues here are considered to be noise-free.)

the square of the diffusion coefficient in the direction along the Definition: A scalar measurdor a set of eigenvalues is a
axis. This complete tensor description of diffusion cannot be fulfunction that maps a set of eigenvalues into a scalar value.
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FIG. 1. (a) Normalized eigenvalue space (shaded region). Perfect isotropic diffusion maps onto (1, 1). Prolate diffusion ellipoids map along the
identity. Oblate diffusion ellipsoids map along = 1. (b) This demonstrates the regions of normalized eigenvalue space where the diffusion ellipsoid t
toward either a pancake shape or a cigar shape.

Definition: Aninvariant measurdor a set of eigenvalues is eigenvalues is identical for both measur8sequivalent taS,
one that does not depend on the frame of reference in which ttees not imply thas,(A) equalsS,(A). If two measures are
diffusion tensor was measured. Alternatively, the value of aguivalent, there is a function, monotonic over the range of tf
invariant measure does not depend on the order of the eigareasures, that maps the values of one into the other.
values or the names of the eigenvalues used in the calculatiorDefinition: Parametric eigenvalue transformation plot:

Definition: A scalar invariant measures a scalar-valued Let S,;(A) and S,(A) both be scalar-valued maps of the
invariant measure. normalized eigenvalue space. Then a parametric eigenval

Definition: A normalized eigenvalus a point, §,, A,), in  transformation plot is a parametric plot &,(A) versus
two-dimensional space onto which a set of eigenvaluesi¢, S,(A) for all A on theboundaryof normalized eigenvalue
As), is mapped by normalizing the two smaller componengpace. The parametric eigenvalue transformation plot der
with respect to the largest eigenvalue: onstrates whether two scalar measures are equivalent.

they are not equivalent, the parametric eigenvalue transfc

Amin  Aintermediat mation plot will be a closed region. Normalized eigenvalue
j = (Aa Ap). s Id . . :

pace would map into this region. If the measures ar

equivalent, the parametric plot will be a line (a degenerat

[1] . . -

] ) i region with no enclosed area). The shape of the line den

_This can also be thought of as a point on a plane in thregagirates the function that maps the values of one of tt
dimensional space: measures into the other (Fig. 2).

Definition: A Class | measurattains its minimum value
only at (0, 0) in normalized eigenvalue space (Figs. 3a, 3b). .

Definition: A normalized eigenvalue plix a plot ofA, versusy,.  C1asS |l measurattains its minimum value whenevag = 0

All of the allowable values ok, and), fall in the region bounded (Figs- 3¢, 3d).
by A, = 0, \, = 1, andA, = A, (Fig. 1). This region is termed The Mathematica software package (Wolfram Researc

normalized eigenvalue spade. perfect isotropic diffusion, nor- "¢ Champaign, IL) was used on an Apple Quadra comput
malized eigenvalues map onto the point (1, 1). In anisotroditPPle Computer Inc., Cupertino, CA) to prepare the plot:
diffusion, when\, andA, are equal, the diffusion ellipsoid is saidiS€d in this manuscript.

to be prolate (in the extreme case it has the shape of a cigar).

Whena, = 1, the ellipsoid is said to be oblate (in the extreme case RESULTS AND DISCUSSION

it has the shape of a pancake). The boundary of normalized . ) ) . )
eigenvalue space wheke = 0 corresponds to the degenerate case Three rotationally invariant parameters which can be derive

()\min! )\intermediata Amax) g (

)\max )\max

A = ()\aa )\b) = ()\aa /\bi 1) [2]

when the diffusion ellipsoid is an ellipse. from the eigenvalues ard)
Definition: Theorder of normalized eigenvalue&iven two
sets of normalized eigenvalues; and A,, and a particular l1= A1+ A+ A (3]

scalar measurey(A), thenA,; > A, if S(A;) > (A,).
Definition: Two scalar-valued eigenvalue measu®gA)
and S,(A), are equivalentif the order of the normalized 3= AAoAs. [5]

2= (A1d2) + (MA3) + (Azhg) (4]
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FIG. 2. (a) The parametric eigenvalue transformation plofafersus). The shaded region represents the map of normalized eigenvalue space. The ob
prolate, and degenerate boundaries of normalized eigenvalue space are indicated. The entire parametric plot lies below the line of idéntity] &incel
sets of eigenvalues. (b) The parametric eigenvalue transformation pfowvefsusH.

There are other possible invariant parameters that will not benment is dictated by the structure of the noise in the me:

discussed heredj. surement and other similar practical considerations, rather th
by the theoretical properties of the eigenvalue measures.
Measures of Diffusion Magnitude For sets of unequal eigenvalues, the differences between 1

values ofA, J, K, G, andH are due to the effects of disparate
eigenvalues. The harmonic medd, is most influenced by

disparate eigenvalue3, K, andG are influenced less, and the
arithmetic meanA, is influenced the least. This relationship is

The rotationally invariant parametelrs |,, andl; can be put
into forms that have the same units as the eigenvalueg/ghm

A= |§1 - % 6] reflected by the relative magnitudes:

I, (AAy) + (A1Ag) + (AoA5) A=J= (K, G)=H forall sets of eigenvalues.  [11]
J=43= 3 [7]
L 32 (LA + (Ahs) + (A,0) Th_e_ mqgnitude oK relative toQ Changes according to the
K=-S=—= [8] specific eigenvalues under consideration. The theoretical op
A Art Az + Ag mal measure of the overall eigenvalue magnitude depends
G = \32 = sm 9] the exact_ application of th_e measure and the_: exact_me_aning
overall eigenvalue magnitude for a specific application. /
ool G®_ SUSUCLE similar situation exists when determining how to measur
[, 32 (MAy) + (MAg) + (A00) “how big” a person is. Height would be a better measure whe
3 determining door heights and weight would be better for prok
-1 1 1 [10] lems involving lifeboat capacity.

Loy The differences in the values of these measures are not sim|
Ar Ay Ag a transformation of the values by a monotonic function. There a

no monotonic functions that transforf J, K, G, or H into each

A J K, G, andH are all scalar-valued invariant measures of thether. This can be demonstrated by a parametric eigenvalue tra
central tendency of the eigenvalues, or “how big” the eigenvalues dmgmation plot, Fig. 2. Figure 2a defines a region with nonzer
therefore, they are in some sense measures of the magnitudared, and therefore the measufeandJ are not equivalent.
diffusion. The measures, G, andH are the arithmetic mean, the Heretofore, one the more commonly used measures of tl
geometric mean, and the harmonic mean of the eigenvalues, respeagnitude of diffusion has beeh (1, 3, 5-9. This might be
tively. The reciprocal oH has been discussed by Basghr ( related to the fact tha# is least influenced by disparate

In perfect isotropic diffusion the eigenvalues are identical (meaigenvalues and therefore has the least “anisotropy weighting
surement error is not a factor in this discussion of the theoreticalEach measure imposes a different order on the sets
properties of the diffusion measures). In the perfect isotropic cas@envalues. Some measures may prove to have a desira
the diffusion ellipsoid is a sphere. For a given set of isotropjzhysical or physiological interpretations, and others may prov
eigenvalues, all five measurds, J, K, G, andH, yield identical superior for demonstrating various features on parametric in
values for the magnitude of isotropic diffusion. Therefore, theges. It is important to consider the theoretical property of th
optimal choice of which measure to use in an isotropic enwineasure, since measures determine the order of eigenva



MARK M. BAHN

0.8

0.8

Aa



MEASURES IN DIFFUSION TENSOR IMAGING 5

space. Use of one measure might result in an image with aA similar relationship exists for all of the other anisotropy
lesion brighter than a certain comparison structure, whereasasures listed above. Because of this, the discussion of anic
use of another measure might result in an image with the sampy measures can be limited to their effects on two-dimension

lesion darker than the comparison structure. normalized eigenvalue space and still be completely generalizal
_ to the entire three-dimensional eigenvalue space.
Measures of Anisotropy Measures of anisotropy can be compared by displayir

When the three eigenvalues of the diffusion tensor are dgPmMetric contour lines on plots of normalized eigenvalus
identical, there is some degree of anisotropy. Anisotropy literafjPac€ (Fig. 3). This convenient display would not be possibl

means “not the same in all directions.” Therefore, intuitively, 45iN9 the entire three-dimensional eigenvalue space. The

measure of anisotropy should reflect the degree of eigenvamgtS demonstrate the desired common feature that the varic

disparity. There are many ways in which the eigenvalues cgifasures are equal to Liat= A, = 1 (isotropic diffusion) and
deviate from isotropy, and the differences between the varidiecrease for points farther away from 1. The differences b

measures of anisotropy depend on the specifics of how they i4gen the measures lie in the specific way that this decrea
points in eigenvalue space into scalar values. occurs. For example, one difference is tRgt andRy, tend to

The values of the measures of central tendeAgyl, K, G, 2€r0 only as both, and A, tend to zero, whered®;, tends to
and H, differ primarily in their sensitivities to disparate ei-2€"0 @SAa t€nds to zeroR,, and R, are Class | measures,

genvalues. From Eq. [11], there is a strict ordering of thiheréaRq, is a Class Il measure.
values of these measures. Because of this, ratios of thes&N® Pasic measures can be combined or transformed

measures can be used as basic measures of anisotropy./#@ftions that are monotonic over their range to yield mor
complicated measures. There are also measures of anisotr

example: . s
that are not related to the basic measures defined BerArg
G example of a transformation of the basic measures is
Rea = A unitless, rang¢0, 1]. [12]
AJ .
A, J, K, G, andH are rotationally invariant and all have the Race = gg Unitless, ranggo, 1. (14]

same units, so ratios &, J, K, G, andH are also rotationally

invariant and unitless. Other similar basic measures of anisot- , . .
R cubed is another transformation of the basic measure
ropy a'reR.'lAa RKA! RHA! RGJI RHJa RHG! RHK'

. . It is equal to the familiar volume ratio, VRB). VR is equiv-
BecauséA = J = (K, G) = H, with equality only when the | 9 . i X a
. : ent toRg,. VR is a Class |l measure:
eigenvalues are equal, values of these ratios near 1 occurdst

isotropic diffusion. Because disparate eigenvalues reduce the

values of the numerators of these ratios to a greater degree th R = (R.,)3 = 27A 1AM ;

= = ——————= unitless, range [0, 1].
the values of the denominators, values of the ratios that are (Rev) A+ A2+ 4y)° ge [0, 1]
near zero correspond to more disparate eigenvalues, more [15]

anisotropic eigenvalues. It is the strict order of the magnitudes
of the measures of central tendency that is the critical featureAnother measure is
of these ratios being measures of anisotropy.
Ry, is not included in the list of anisotropy measures because GGG
it is identical toR;s. Rxg andRgx are not included in this list CV=1-— 4/1 — HAA
because there is not a strict orderingkofelative toG for all
sets of eigenvalues. standard deviation
The normalized eigenvalue plot is a two-dimensional way of =1- - bA
displaying all of the anisotropy information in a set of eigen- v

values. Equation [13] demonstrates that normalization of the_l_hiS is proportional to the coefficient of variation of the

eigenvalues by any scale factor does not alter the value of the .
4 ) eigenvalues and has also been used as a measure of anisot
anisotropy measures:

(3,6) (Fig. 3e). CV is a Class | measure. CV is not quite ¢
GOy Ap As)  AmaG(Aa Ap 1) combination pf the basic measures because it contams_ t.h.e te
Ag) = Ay Ay No) = Al Ay, D) G/H, the reciprocal of a basic measure. VR and CV initially
bt 73 max T Ra T appear very similar; VR contains the te@GG/AAAand CV
= Rga(Ay Ap 1), [13] contains the terns GG/HAA. However, the presence of the

unitless, ranggo, 1. [16]

RGA()\II )\21

FIG. 3. Normalized eigenvalue space with superimposed isometric contour lines for the anisotropy measures. White shading represents a value
whereas black is zero. (#)/J, (b) K/A, (¢c) G/J, and (d)H/K. 3(e) A normalized eigenvalue plot of CV with superimposed isometric contour lines.
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FIG. 4. Normalized eigenvalue space superimposed with the line of identity. The data points are mean eigenvalues from regions of huB)aandrain
monkey brain ). Diffusion for cerebral spinal fluid (CSF) is most isotropic: It maps nearest to (1, 1). The eigenvalues for gray matter are more isotropi
those of white matter. IG= internal capsule, CG= corpus callosum, Ant anterior, Post= posterior, OR= optic radiations.

in the denominator of CV changes it from a Class Il measureughly parallel to the distribution of the more anisotropic
to a Class | measure. data points (Figs. 3c and 4). TherefofR,, Rka, and CV
CV and VR are clearly not equivalent because CV is in Claggould be candidate measures for further analysis with re
I, whereas VR is in Class Il. Their nonequivalence can also gard to the effects of experimental error. The distanc
demonstrated by a parametric eigenvalue transformation plbetween the isometric contour lines is not as critical a factc
As in the case with different measures of the overall mags the orientation of the isometric contour lines. The mes
nitude of diffusion, the best anisotropy measure to use depesdses in Fig. 3 can be transformed by appropriate functior

on the particular situation. without changing the orientation of the isometric contoul
lines to produce images with the desired image intensity ar
A Practical Application of the Method contrast.

Diffusion tensor imaging eigenvalues from various re-
gions in monkey braing) and human brain9) are available CONCLUSIONS
in the literature. These values can be plotted on a normalized
eigenvalue plot, Fig. 4. If one were designing an anisotropy Various basic invariant measures of both diffusion magni
measure, the greatest sensitivity in discriminating two rédde and anisotropy have been introduced here. These can
gions would be with a measure that has isometric contoadded to the growing repertoire of available invariant mes
lines running perpendicular to a line connecting the eigerures. Many other measures can be made by combinations
value points of the structures that are under study. Figuresctional transforms of these basic measures. The optim
3a, 3b, and 3e demonstrate that the isometric contour linegasure to use for any specific application depends on t
of the anisotropy measurB;,, Rxs, and CV are roughly exact nature of the application.
perpendicular to the distribution of white matter points in The normalized eigenvalue plot allows graphic display o
Fig. 4. In contrast, the measuRy,; might be considered to scalar eigenvalue measures. The visual display assists in c
have less desirable features because its isometric lines atiag an intuitive understanding of the measure. The norme
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ized eigenvalue plot can be used to compare two differehtJ. Crank, “The Mathematics of Diffusion,” 2nd ed. Oxford Science
scalar measures of an eigenvalue characteristic. Moreover, thi§ublications, Oxford, 1975.

graphic display can be used to choose between various anigoff- E. Conturo, R. C. McKinstry, E. Akbudak, and B. H. Robinson,
ropy measures by demonstrating how the measure Changegncoding of anisotropic diffusion with tetrahedral gradients: a gen-
relative to the eigenvalues under stud eral mathematical diffusion formalism and experimental results.

_g . Y . . Magn. Reson. Med. 35(3), 399-412 (1996).
The parametric eigenvalue transformation plot allows visual _ _ . _ _

assessment of whether two measures are equivalent The rﬁl'e%)# J. Basser, New histological and physiological stains derived from

. - ; . iffusion-tensor MR images. Ann. NY Acad. Sci. 820, 123-138
sures are equivalent if the parametric eigenvalue transformay;gg7)

tion pIOt IS a “ne_' . . . 5. P. J. Basser and C. Pierpaoli, Microstructural and physiological
In actual applications the influence of eigenvalue measure-featyres of tissues elucidated by quantitative-diffusion-tensor MRI.

ment error on these measures must be considered when choos- Magn. Reson. B 111(3), 209-219 (1996).

ing a measure for any particular application. 6. P. J. Basser, Inferring microstructural features and the physiological
state of tissues from diffusion-weighted images. NMR Biomed. 8(7-
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